25 research outputs found

    Hydro-meteorological risk assessment methods and management by nature-based solutions

    Get PDF
    Hydro-meteorological risk (HMR) management involves a range of methods, such as monitoring of uncertain climate, planning and prevention by technical countermeasures, risk assessment, preparedness for risk by early-warnings, spreading knowledge and awareness, response and recovery. To execute HMR management by risk assessment, many models and tools, ranging from conceptual to sophisticated/numerical methods are currently in use. However, there is still a gap in systematically classifying and documenting them in the field of disaster risk management. This paper discusses various methods used for HMR assessment and its management via potential nature-based solutions (NBS), which are actually lessons learnt from nature. We focused on three hydro-meteorological hazards (HMHs), floods, droughts and heatwaves, and their management by relevant NBS. Different methodologies related to the chosen HMHs are considered with respect to exposure, vulnerability and adaptation interaction of the elements at risk. Two widely used methods for flood risk assessment are fuzzy logic (e.g. fuzzy analytic hierarchy process) and probabilistic methodology (e.g. univariate and multivariate probability distributions). Different kinds of indices have been described in the literature to define drought risk, depending upon the type of drought and the purpose of evaluation. For heatwave risk estimation, mapping of the vulnerable property and population-based on geographical information system is a widely used methodology in addition to a number of computational, mathematical and statistical methods, such as principal component analysis, extreme value theorem, functional data analysis, the Ornstein–Uhlenbeck process and meta-analysis. NBS (blue, green and hybrid infrastructures) are promoted for HMR management. For example, marshes and wetlands in place of dams for flood and drought risk reduction, and green infrastructure for urban cooling and combating heatwaves, are potential NBS. More research is needed into risk assessment and management through NBS, to enhance its wider significance for sustainable living, building adaptations and resilience

    Using empirical science education in schools to improve climate change literacy

    Get PDF
    Providing children with a clear understanding of climate change drivers and their mitigation is crucial for their roles as future earth stewards. To achieve this, it will be necessary to reverse the declining interest in STEM (Science, Technology, Engineering and Mathematics) education in schools in the UK and other countries, as STEM skills will be critical when designing effective mitigation solutions for climate change. The ‘Heat-Cool Initiative’ was co-designed and successfully implemented in five primary/secondary UK schools, as a playful learning tool to unleash student interest in STEM subjects. 103 students from two cohorts (years 5–6 and 7–9) participated in five Heat-Cool activity sessions where they used infrared cameras to explore the issue of urban heat. Their learning was evaluated using a multi-functional quantitative assessment, including pre- and postsession quizzes. Climate change literacy increased by 9.4% in primary school children and by 4.5% in secondary school children. Analyses of >2000 infrared images taken by students, categorised into 13 common themes, revealed age-related differences in children’s cognitive development. At primary school age, images of the ‘self’ dominated; secondary school children engaged more with their physical environment. This novel approach demonstrated the importance of developing tailored technology-enhanced STEM education programmes for different age cohorts, leading to a high capacity for improving learning outcomes regarding climate change. Such programmes, embedded in school curricula nationally and internationally, could become a much-needed positive contribution to reaching the United Nation’s Sustainable Development Goals, especially Goals 4 (Quality Education) and 13 (Climate Action)

    Context matters: co-creating nature-based solutions in rural living labs

    Get PDF
    The use of Nature-based Solutions (NBS), designed and implemented with participatory approaches, is rapidly increasing. Much use is being made of the Living Lab (LL) concept to co-create innovative NBS with stakeholders in a certain societal and environmental, real-life context. Most of the current research revolves around urban LLs, thus overlooking specificities of rural areas. Furthermore, the influence of the context itself on co-creation processes is insufficiently recognised, leaving challenges associated with co-creation such as stakeholder engagement unresolved. By exploring the co-creation processes in the LLs of the OPERANDUM project, this study identifies eighteen contextual factors shaping the co-creation processes of NBS within rural territories and provides associated recommendations. In addition, based on lessons learnt in the OPERANDUM project, we discuss the value of a relational place-based approach in LLs, suggesting that the co-creation process should be approached as a dynamic confluence of many interconnected contextual factors. We conclude that acknowledging the interconnections in co-creation in the real-life context of rural territories may increase the success and impact of the LL approach, and ultimately, the benefits of NBS

    Nature-based solutions for hydro-meteorological hazards: revised concepts, classification schemes and databases

    Get PDF
    Hydro-meteorological hazards (HMHs) have had a strong impact on human societies and ecosystems. Their impact is projected to be exacerbated by future climate scenarios. HMHs cataloguing is an effective tool to evaluate their associated risks and plan appropriate remediation strategies. However, factors linked to HMHs origin and triggers remain uncertain, which poses a challenge for their cataloguing. Focusing on key HMHs (floods, storm surge, landslides, droughts, and heatwaves), the goal of this review paper is to analyse and present a classification scheme, key features, and elements for designing nature-based solutions (NBS) and mitigating the adverse impacts of HMHs in Europe. For this purpose, we systematically examined the literature on NBS classification and assessed the gaps that hinder the widespread uptake of NBS. Furthermore, we critically evaluated the existing literature to give a better understanding of the HMHs drivers and their interrelationship (causing multi-hazards). Further conceptualisation of classification scheme and categories of NBS shows that relatively few studies have been carried out on utilising the broader concepts of NBS in tackling HMHs and that the classification and effectiveness of each NBS are dependent on the location, architecture, typology, green species, environmental conditions as well as interrelated non-linear systems. NBS are often more cost-effective than hard engineering approaches used within the existing systems, especially when taking into consideration their potential co-benefits. We also evaluated the sources of available data for HMHs and NBS, highlighted gaps in data, and presented strategies to overcome the current shortcomings for the development of the NBS for HMHs. We highlighted specific gaps and barriers that need to be filled since the uptake and upscaling studies of NBS in HMHs reduction is rare. The fundamental concepts and the key technical features of past studies reviewed here could help practitioners to design and implement NBS in a real-world situation

    An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards

    Get PDF
    To bring to fruition the capability of nature-based solutions (NBS) in mitigating hydro-meteorological risks (HMRs) and facilitate their widespread uptake require a consolidated knowledge-base related to their monitoring methods, efficiency, functioning and the ecosystem services they provide. We attempt to fill this knowledge gap by reviewing and compiling the existing scientific literature on methods, including ground-based measurements (e.g. gauging stations, wireless sensor network) and remote sensing observations (e.g. from topographic LiDAR, multispectral and radar sensors) that have been used and/or can be relevant to monitor the performance of NBS against five HMRs: floods, droughts, heatwaves, landslides, and storm surges and coastal erosion. These can allow the mapping of the risks and impacts of the specific hydro-meteorological events. We found that the selection and application of monitoring methods mostly rely on the particular NBS being monitored, resource availability (e.g. time, budget, space) and type of HMRs. No standalone method currently exists that can allow monitoring the performance of NBS in its broadest view. However, equipments, tools and technologies developed for other purposes, such as for ground-based measurements and atmospheric observations, can be applied to accurately monitor the performance of NBS to mitigate HMRs. We also focused on the capabilities of passive and active remote sensing, pointing out their associated opportunities and difficulties for NBS monitoring application. We conclude that the advancement in airborne and satellite-based remote sensing technology has signified a leap in the systematic monitoring of NBS performance, as well as provided a robust way for the spatial and temporal comparison of NBS intervention versus its absence. This improved performance measurement can support the evaluation of existing uncertainty and scepticism in selecting NBS over the artificially built concrete structures or grey approaches by addressing the questions of performance precariousness. Remote sensing technical developments, however, take time to shift toward a state of operational readiness for monitoring the progress of NBS in place (e.g. green NBS growth rate, their changes and effectiveness through time). More research is required to develop a holistic approach, which could routinely and continually monitor the performance of NBS over a large scale of intervention. This performance evaluation could increase the ecological and socio-economic benefits of NBS, and also create high levels of their acceptance and confidence by overcoming potential scepticism of NBS implementations

    Nature-based solutions efficiency evaluation against natural hazards: modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS

    Urban heat mitigation by green and blue infrastructure: drivers, effectiveness, and future needs

    Get PDF
    The combination of urbanisation and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructures (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesises the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximise their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorised under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well-researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0±3.5°C), wetlands (4.9±3.2°C), green walls (4.1±4.2°C), street trees (3.8±3.1°C), and vegetated balconies (3.8±2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb (continental warm-summer humid) to BSk (dry, cold semi-arid) and Cwa (temperate) to Am (tropical)). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritising effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience

    Towards an operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions

    Get PDF
    Nature-based solutions (NBS) are increasingly being implemented as suitable approaches for reducing vulnerability and risk of social-ecological systems (SES) to hydro-meteorological hazards. Understanding vulnerability and risk of SES is crucial in order to design and implement NBS projects appropriately. A systematic literature review was carried out to examine the suitability of, or gaps in, existing frameworks for vulnerability and risk assessment of SES to hydro-meteorological hazards. The review confirms that very few frameworks have been developed in the context of NBS. Most of the frameworks have emphasised social systems over ecological systems. Furthermore, they have not explicitly considered the temporal dimension of risk reduction measures. The study proposes an indicator-based vulnerability and risk assessment framework in the context of NBS (VR-NBS) that addresses both the above limitations and considers established NBS principles. The framework aims to allow for a better consideration of the multiple benefits afforded by NBS and which impact all the dimensions of risk. A list of 135 indicators is identified through literature review and surveys in NBS project sites. This list is composed of indicators representing the social sub-system (61% of total indicators) and the ecological sub-system (39% of total indicators). The list will act as a reference indicator library in the context of NBS projects and will be regularly updated as lessons are learnt. While the proposed VR-NBS framework is developed considering hydro-meteorological hazards and NBS, it can be adapted for other natural hazards and different types of risk reduction measures
    corecore